Skip to main content

What does Arduino Duemilanove board contain

The Arduino board is a small microcontroller board, which is a small circuit (the board) that contains a whole computer on a small chip (the microcontroller). The Arduino team has implemented the small trainer kit for student or beginner putting their first step in embedded systems. It’s a lot cheaper and very useful to build interesting devices. Every embedded development kit has its own microcontroller, similarly when you look at the Arduino board: you’ll see a black chip with 28 “legs”—that chip is the ATmega168, the heart of your board. They have placed on this board all the components that are required for this microcontroller to work properly and to communicate with your computer. There are many versions of this board; the one we’ll use throughout this book is the Arduino Duemilanove, which is the simplest one to use and the best one for learning on.

 
Arduino Duemilanove board
Here is an explanation of what every element of the board does:
14 Digital IO pins (pins 0–13):- These can be inputs or outputs, which is specified by the sketch you create in the IDE.

6 Analogue In pins (pins 0–5):- These dedicated analogue input pins take analogue values (i.e., voltage readings from a sensor) and convert them into a number between 0 and 1023.

6 Analogue Out pins (pins 3, 5, 6, 9, 10, and 11):- These are actually six of the digital pins that can be reprogrammed for analogue output using the sketch you create in the IDE.

The board can be powered from your computer’s USB port, most USB chargers, or an AC adapter (9 volts recommended, 2.1mm barrel tip, center positive). If there is no power supply plugged into the power socket, the power will come from the USB board, but as soon as you plug a power supply, the board will automatically use it.

Hence, it is good for one who is starting their projects in embedded systems and finding trainer kit that can be learnt easily by self-study. A beginner can brush up his or her skills on these full functional microcontroller kit available in different ranges and provides flexible and easy-to-use of hardware and software that can build up interest of a learner in embedded systems.

Comments

Popular posts from this blog

Buzzer interface with 8051 microcontroller

Buzzer  is a electronic device that converts the electronic signal into buzzing noise, that is applied to it. It can be used as electronic bell or as quiz buzzer in many applications around us. Here, i world like to discuss the interfacing of a small buzzer with 8051 microcontroller and how different projects can be constructed. Buzzer Interfacing: This project shows the interface with AT89S52 microcontroller to a buzzer. When a push button is pressed, the buzzer will get ON and OFF ( number of times set in the code ) and then stops. Circuit Diagram: - The port P1 of the microcontroller is connected to buzzer. This type of connection is possible, if the current requirements of the buzzer is not more than 20mA. The output is in current source mode so that buzzer will turn ON when the output of the port is logic LOW. Switch is connected to port P3 which remains at logic HIGH by pull up resistor.  Code: #include "REG52.h" #define buz P1 sbit SW=P3^0; long i...

Comparison Chart Between 8051, 8052, 8031and 8751

8051 is a popular 8-bit microcontroller and has been used in many applications since Intel introduced it. Many 8051 architecture are produced by Triscend, Intel, Atmel, Philips, Infineon (Siemens), ISSI, and Max Corp. Today, 8051 microcontrollers may not be popular but, the 8051 architecture is still popular and employed in thousands of embedded applications. This 8-bit architecture has been different segments such as 8052, 8051, 8751 and 8031 . 8052 is the super-set of 8051 and 8031 is the memory-less microcontroller hence, it has interfaced with external ROM. Whereas, 8751 chip has only 4Kbytes of on chip UV-EPROM. Everyone knows about the general 40-pin microcontroller i.e. 8051 introduced by Intel in 1980s and consists of serial communication pins, Timer, Interrupts, RAM, ROM. It has 4 ports and each port has 8 pins, total 32 pins and other 8 pins for other purposes. 8052 is the super-set of 8051 that consists of 8K bytes of internal RAM (4K in 8051), 256 by...

Different ways to generate delays in 8051

The delay length in 8051 microcontroller depends on three factors: The crystal frequency the number of clock per machine the C compiler. The original 8051 used 1/12 of the crystal oscillator frequency as one machine cycle. In other words, each machine cycle is equal to 12 clocks period of the crystal frequency connected to X1-X2 pins of 8051. To speed up the 8051, many recent versions of the 8051 have reduced the number of clocks per machine cycle from 12 to four, or even one. The frequency for the timer is always 1/12th the frequency of the crystal attached to the 8051, regardless of the 8051 version. In other words, AT89C51, DS5000, and DS89C4x0 the duration of the time to execute an instruction varies, but they all use 1/12th of the crystal's oscillator frequency for the clock source. 8051 has two different ways to generate time delay using C programming, regardless of 8051 version. The first method is simply using Loop   program function in which Delay() funct...