Skip to main content

Configure Device in between the program in Keil µvision software

Keil µvision is the advanced integrated development environment allows to easy develop program for different microcontroller devices from different manufacturers. It allows the developer to develop code in Embedded C language or Assembly language and can easily simulate the program using in-built simulator tools.

You might have read the steps to create the new project in Keil µvision software. Keil µvision 4 includes the devices such as Cortex M0, Cortex M3, ARM7 and ARM9 and they can be selected from the database of the device opened up when we create a new project. The developers have to select the particular device from the list of device database so that program can be created for that device only. But, what happen if you want to change the device in between the program and want to test your code on other device without creating a new project.
Steps to select the Device from Device Database:
You can do so without creating the new project or after creating the project with different device selection.

1. You can see the "Flash" option in the menu toolbar.

2. Now, click on it so that you will find the option- "Configure Flash Tools". A small window will be opened up in the same window only.
3. Select "Device" option from the toolbar in the pop-up window. From here you can select the other device from the device database of Keil µvision software and run the same program for other device.
To run the program successfully, you have to only change the header file for the new device. Otherwise, the compile error will be shown up.

Comments

Popular posts from this blog

Buzzer interface with 8051 microcontroller

Buzzer  is a electronic device that converts the electronic signal into buzzing noise, that is applied to it. It can be used as electronic bell or as quiz buzzer in many applications around us. Here, i world like to discuss the interfacing of a small buzzer with 8051 microcontroller and how different projects can be constructed. Buzzer Interfacing: This project shows the interface with AT89S52 microcontroller to a buzzer. When a push button is pressed, the buzzer will get ON and OFF ( number of times set in the code ) and then stops. Circuit Diagram: - The port P1 of the microcontroller is connected to buzzer. This type of connection is possible, if the current requirements of the buzzer is not more than 20mA. The output is in current source mode so that buzzer will turn ON when the output of the port is logic LOW. Switch is connected to port P3 which remains at logic HIGH by pull up resistor.  Code: #include "REG52.h" #define buz P1 sbit SW=P3^0; long i...

Comparison Chart Between 8051, 8052, 8031and 8751

8051 is a popular 8-bit microcontroller and has been used in many applications since Intel introduced it. Many 8051 architecture are produced by Triscend, Intel, Atmel, Philips, Infineon (Siemens), ISSI, and Max Corp. Today, 8051 microcontrollers may not be popular but, the 8051 architecture is still popular and employed in thousands of embedded applications. This 8-bit architecture has been different segments such as 8052, 8051, 8751 and 8031 . 8052 is the super-set of 8051 and 8031 is the memory-less microcontroller hence, it has interfaced with external ROM. Whereas, 8751 chip has only 4Kbytes of on chip UV-EPROM. Everyone knows about the general 40-pin microcontroller i.e. 8051 introduced by Intel in 1980s and consists of serial communication pins, Timer, Interrupts, RAM, ROM. It has 4 ports and each port has 8 pins, total 32 pins and other 8 pins for other purposes. 8052 is the super-set of 8051 that consists of 8K bytes of internal RAM (4K in 8051), 256 by...

Different ways to generate delays in 8051

The delay length in 8051 microcontroller depends on three factors: The crystal frequency the number of clock per machine the C compiler. The original 8051 used 1/12 of the crystal oscillator frequency as one machine cycle. In other words, each machine cycle is equal to 12 clocks period of the crystal frequency connected to X1-X2 pins of 8051. To speed up the 8051, many recent versions of the 8051 have reduced the number of clocks per machine cycle from 12 to four, or even one. The frequency for the timer is always 1/12th the frequency of the crystal attached to the 8051, regardless of the 8051 version. In other words, AT89C51, DS5000, and DS89C4x0 the duration of the time to execute an instruction varies, but they all use 1/12th of the crystal's oscillator frequency for the clock source. 8051 has two different ways to generate time delay using C programming, regardless of 8051 version. The first method is simply using Loop   program function in which Delay() funct...